New Guidelines for Securing Medical Devices and Networks

Medical Device Security

The increased use of technology in healthcare over the past decade has resulted in greatly improved patient outcomes. However, the addition of IP-enabled devices has elevated concerns about security. The U.S. Food and Drug Administration recently published an advisory on Cybersecurity for Medical Devices and Hospital Networks and a new draft guidance document, Content of Premarket Submissions for Management of Cybersecurity in Medical Devices.

It’s likely that the FDA’s guidance responds to a presidential Executive Order and Policy Directive aimed at reducing critical infrastructure risk and a Department of Homeland Security bulletin about the vulnerability of health system LANs due to unsecured medical devices connected to them.

As things stand, medical devices, which include everything from intravenous pumps and pharmacy robots to implanted pacemakers, can represent a huge vulnerability to the security of networks used to deliver healthcare. Many networks connect to hospital LANs via older, insecure wireless technology. Furthermore, many still retain their default security settings, making them easy targets for hackers. Medical devices have become, therefore, a potentially unsecured backdoor to vast amounts of highly valuable, personally identifiable health information stored on healthcare networks.

Not all providers have firewalled and segmented their networks to isolate these insecure medical devices, or implemented “bent-pipe” application security to encapsulate all communications to and from endpoints. As the black market price of a medical record continues to soar, cybercriminals are directed increasingly to the easy pickings of poorly secured healthcare networks, making the risks all the more apparent.

While the FDA’s guidance to medical device manufacturers has been a long time coming, in its current form it directs manufacturers to evaluate and address cybersecurity risks and vulnerabilities for current and planned devices. It does not necessarily address the millions of devices that may no longer be supported by manufacturers, but that still dominate hospitals and healthcare systems.

Despite an increased awareness about the vulnerability of these older devices, financial pressure on healthcare delivery makes it challenging for health providers to rip and replace them. Alternative security controls need to be considered to protect these devices and the networks to which they are attached.

While the new FDA guidelines and DHS bulletin stress the risks that medical devices pose to hospital networks, we also need to take into account the reverse situation. If hospital networks can be compromised via wireless medical devices, it stands to reason that life-sustaining medical devices can be compromised through poorly secured hospital networks. While some healthcare providers have state-of-the-art networks with high levels of performance, reliability and security, others have yet to make this investment in people, process and technology.

With ever-growing numbers of medical devices used in critical patient care, the risks that one or more will be compromised should be a huge concern to all of us. As they stand currently, these life-sustaining devices could be targets for cyberassassins or cyberterrorists seeking to extort or hold for ransom patients, medical device manufacturers and healthcare providers.

While attacks of this sort are not yet common, some have already occurred. A real possibility exists that more attacks of this type will take place in the not-too-distant future unless better security controls are used to protect these devices and the networks to which they are connected.

This post was co-authored with Sam Visner, who leads CSC’s global company‐wide cyber strategy.


Subscribe to our periodic posts via email to periodic new posts so you don't miss them.

Original stories and articles may be republished without charge provided that attribution is provided to the source and author. Articles written for, and published first elsewhere, are subject to the republishing terms and conditions of the host site.